Transcriptional profile of the Arabidopsis root quiescent center.
نویسندگان
چکیده
The self-renewal characteristics of stem cells render them vital engines of development. To better understand the molecular mechanisms that determine the properties of stem cells, transcript profiling was conducted on quiescent center (QC) cells from the Arabidopsis thaliana root meristem. The AGAMOUS-LIKE 42 (AGL42) gene, which encodes a MADS box transcription factor whose expression is enriched in the QC, was used to mark these cells. RNA was isolated from sorted cells, labeled, and hybridized to Affymetrix microarrays. Comparisons with digital in situ expression profiles of surrounding tissues identified a set of genes enriched in the QC. Promoter regions from a subset of transcription factors identified as enriched in the QC conferred expression in the QC. These studies demonstrated that it is possible to successfully isolate and profile a rare cell type in the plant. Mutations in all enriched transcription factor genes including AGL42 exhibited no detectable root phenotype, raising the possibility of a high degree of functional redundancy in the QC.
منابع مشابه
Root development: Quiescent center not so mute after all
Many functions have been attributed to the quiescent center of a root apical meristem, from stem cell reservoir to pattern-generating center. Limited laser ablation of the quiescent center in Arabidopsis has now revealed that it acts to suppress differentiation and to maintain the surrounding initial cells as stem cells.
متن کاملA P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root
Reactive oxygen species (ROS) are recognized as important regulators of cell division and differentiation. The Arabidopsis thaliana P-loop NTPase encoded by APP1 affects root stem cell niche identity through its control of local ROS homeostasis. The disruption of APP1 is accompanied by a reduction in ROS level, a rise in the rate of cell division in the quiescent center (QC) and the promotion o...
متن کاملSalt Stress Affects the Redox Status of Arabidopsis Root Meristems
We report the redox status (profiles) for specific populations of cells that comprise the Arabidopsis root tip. For recently germinated, 3-5-day-old seedlings we show that the region of the root tip with the most reduced redox status includes the root cap initials, the quiescent center and the most distal portion of the proximal meristem, and coincides with (overlays) the region of the auxin ma...
متن کاملFramework for gradual progression of cell ontogeny in the Arabidopsis root meristem.
In plants, apical meristems allow continuous growth along the body axis. Within the root apical meristem, a group of slowly dividing quiescent center cells is thought to limit stem cell activity to directly neighboring cells, thus endowing them with unique properties, distinct from displaced daughters. This binary identity of the stem cells stands in apparent contradiction to the more gradual c...
متن کاملQuiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor.
Lateral root formation is an important determinant of root system architecture. In Arabidopsis, lateral roots originate from pericycle cells, which undergo a program of morphogenesis to generate a new lateral root meristem. Despite its importance for root meristem organization, the onset of quiescent center (QC) formation during lateral root morphogenesis remains unclear. Here, we used live 3D ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 17 7 شماره
صفحات -
تاریخ انتشار 2005